Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature-Dependent Hall and Field-Effect Mobility in Strongly Coupled All-Inorganic Nanocrystal Arrays

Identifieur interne : 000024 ( Main/Repository ); précédent : 000023; suivant : 000025

Temperature-Dependent Hall and Field-Effect Mobility in Strongly Coupled All-Inorganic Nanocrystal Arrays

Auteurs : RBID : Pascal:14-0096886

Descripteurs français

English descriptors

Abstract

We report on the temperature-dependent Hall effect characteristics of nanocrystal (NC) arrays prepared from colloidal InAs NCs capped with metal chalcogenide complex (MCC) ligands (In2Se42- and Cu7S4-). Our study demonstrates that Hall effect measurements are a powerful way of exploring the fundamental properties of NC solids. We found that solution-cast 5.3 nm InAs NC films capped with copper sulfide MCC ligands exhibited high Hall mobility values over 16 cm2/(V s). We also showed that the nature of MCC ligands can control doping in NC solids. The comparative study of the temperature-dependent Hall and field-effect mobility values provides valuable insights concerning the charge transport mechanism and points to the transition from a weak to a strong coupling regime in all-inorganic InAs NC solids.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0096886

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Temperature-Dependent Hall and Field-Effect Mobility in Strongly Coupled All-Inorganic Nanocrystal Arrays</title>
<author>
<name>JAEYOUNG JANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry and James Franck Institute, University of Chicago</s1>
<s2>Illinois 60637</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Illinois 60637</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WENYONG LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry and James Franck Institute, University of Chicago</s1>
<s2>Illinois 60637</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Illinois 60637</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JAE SUNG SON</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry and James Franck Institute, University of Chicago</s1>
<s2>Illinois 60637</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Illinois 60637</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Talapin, Dmitri V" uniqKey="Talapin D">Dmitri V. Talapin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry and James Franck Institute, University of Chicago</s1>
<s2>Illinois 60637</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Illinois 60637</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for Nanoscale Materials, Argonne National Laboratory</s1>
<s2>Argonne, Illinois 60439</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Argonne, Illinois 60439</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0096886</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0096886 INIST</idno>
<idno type="RBID">Pascal:14-0096886</idno>
<idno type="wicri:Area/Main/Corpus">000023</idno>
<idno type="wicri:Area/Main/Repository">000024</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arrays</term>
<term>Charge transport</term>
<term>Comparative study</term>
<term>Copper sulfide</term>
<term>Doping</term>
<term>Electrical properties</term>
<term>Hall effect</term>
<term>Hall mobility</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Ligands</term>
<term>Metal complex</term>
<term>Nanocrystal</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Temperature dependence</term>
<term>Temperature effects</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépendance température</term>
<term>Effet Hall</term>
<term>Propriété électrique</term>
<term>Nanocristal</term>
<term>Nanomatériau</term>
<term>Réseau(arrangement)</term>
<term>Effet température</term>
<term>Synthèse nanomatériau</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Métal complexe</term>
<term>Ligand</term>
<term>Couche mince</term>
<term>Sulfure de cuivre</term>
<term>Mobilité Hall</term>
<term>Dopage</term>
<term>Etude comparative</term>
<term>Transport charge</term>
<term>Cu7S4</term>
<term>8107B</term>
<term>8116</term>
<term>7363</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the temperature-dependent Hall effect characteristics of nanocrystal (NC) arrays prepared from colloidal InAs NCs capped with metal chalcogenide complex (MCC) ligands (In
<sub>2</sub>
Se
<sub>4</sub>
<sup>2-</sup>
and Cu
<sub>7</sub>
S
<sub>4</sub>
<sup>-</sup>
). Our study demonstrates that Hall effect measurements are a powerful way of exploring the fundamental properties of NC solids. We found that solution-cast 5.3 nm InAs NC films capped with copper sulfide MCC ligands exhibited high Hall mobility values over 16 cm
<sup>2</sup>
/(V s). We also showed that the nature of MCC ligands can control doping in NC solids. The comparative study of the temperature-dependent Hall and field-effect mobility values provides valuable insights concerning the charge transport mechanism and points to the transition from a weak to a strong coupling regime in all-inorganic InAs NC solids.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Temperature-Dependent Hall and Field-Effect Mobility in Strongly Coupled All-Inorganic Nanocrystal Arrays</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JAEYOUNG JANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WENYONG LIU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JAE SUNG SON</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TALAPIN (Dmitri V.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry and James Franck Institute, University of Chicago</s1>
<s2>Illinois 60637</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center for Nanoscale Materials, Argonne National Laboratory</s1>
<s2>Argonne, Illinois 60439</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>653-662</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000506135620390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>65 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0096886</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the temperature-dependent Hall effect characteristics of nanocrystal (NC) arrays prepared from colloidal InAs NCs capped with metal chalcogenide complex (MCC) ligands (In
<sub>2</sub>
Se
<sub>4</sub>
<sup>2-</sup>
and Cu
<sub>7</sub>
S
<sub>4</sub>
<sup>-</sup>
). Our study demonstrates that Hall effect measurements are a powerful way of exploring the fundamental properties of NC solids. We found that solution-cast 5.3 nm InAs NC films capped with copper sulfide MCC ligands exhibited high Hall mobility values over 16 cm
<sup>2</sup>
/(V s). We also showed that the nature of MCC ligands can control doping in NC solids. The comparative study of the temperature-dependent Hall and field-effect mobility values provides valuable insights concerning the charge transport mechanism and points to the transition from a weak to a strong coupling regime in all-inorganic InAs NC solids.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C63</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Métal complexe</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Metal complex</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Metal complejo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Ligand</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ligands</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Mobilité Hall</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Hall mobility</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Doping</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Doping</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Transport charge</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Charge transport</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Cu7S4</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>132</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0096886
   |texte=   Temperature-Dependent Hall and Field-Effect Mobility in Strongly Coupled All-Inorganic Nanocrystal Arrays
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024